This example illustrates the impact of applying parameter optimization on the performance of supervised learning such as a random forest.
[code2=python] #https://jupyter.org/try
#Demo6
#M. S. Rakha, Ph.D.
# Post-Doctoral - Queen's University
# Parameter Optimization
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pandas as pd
from sklearn.cluster import KMeans
from sklearn import datasets
from sklearn.preprocessing
...
Statistics : Posted by DrRakha • on Tue Oct 29, 2019 3:04 pm • Replies 0 • Views 574
[code2=python] #https://jupyter.org/try
#Demo6
#M. S. Rakha, Ph.D.
# Post-Doctoral - Queen's University
# Parameter Optimization
%matplotlib inline
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import pandas as pd
from sklearn.cluster import KMeans
from sklearn import datasets
from sklearn.preprocessing
...
Statistics : Posted by DrRakha • on Tue Oct 29, 2019 3:04 pm • Replies 0 • Views 574